Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Zoonoses Public Health ; 69(5): 587-592, 2022 08.
Article in English | MEDLINE | ID: covidwho-1794548

ABSTRACT

SARS-CoV-2 infection has been described in a wide range of species, including domestic animals such as dogs and cats. Illness in dogs is usually self-limiting, and further diagnostics may not be pursued if clinical signs resolve or they respond to empirical treatment. As new variants emerge, the clinical presentation and role in transmission may vary in animals. This report highlights different clinical presentations and immunological responses in two SARS-CoV-2 Delta-variant-positive dogs with similar exposure to the same fully vaccinated human with a SARS-CoV-2 infection and emphasizes the need for active surveillance and additional One Health research on SARS-CoV-2 variant infections in companion animals and other species.


Subject(s)
COVID-19 , Dog Diseases , Animals , Animals, Domestic , COVID-19/veterinary , Cat Diseases , Cats , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Dogs , Georgia , Humans , SARS-CoV-2/genetics
2.
Viruses ; 14(1)2021 12 31.
Article in English | MEDLINE | ID: covidwho-1580397

ABSTRACT

Mammal-associated coronaviruses have a long evolutionary history across global bat populations, which makes them prone to be the most likely ancestral origins of coronavirus-associated epidemics and pandemics globally. Limited coronavirus research has occurred at the junction of Europe and Asia, thereby investigations in Georgia are critical to complete the coronavirus diversity map in the region. We conducted a cross-sectional coronavirus survey in bat populations at eight locations of Georgia, from July to October of 2014. We tested 188 anal swab samples, remains of previous pathogen discovery studies, for the presence of coronaviruses using end-point pan-coronavirus RT-PCR assays. Samples positive for a 440 bp amplicon were Sanger sequenced to infer coronavirus subgenus or species through phylogenetic reconstructions. Overall, we found a 24.5% positive rate, with 10.1% for Alphacoronavirus and 14.4% for Betacoronavirus. Albeit R. euryale, R. ferrumequinum, M. blythii and M. emarginatus were found infected with both CoV genera, we could not rule out CoV co-infection due to limitation of the sequencing method used and sample availability. Based on phylogenetic inferences and genetic distances at nucleotide and amino acid levels, we found one putative new subgenus and three new species of Alphacoronavirus, and two new species of Betacoronavirus.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Animals , Base Sequence , Coronavirus/classification , Coronavirus/isolation & purification , Coronavirus Infections/virology , Cross-Sectional Studies , Genetic Variation , Geography , Georgia (Republic) , Phylogeny , RNA, Viral/genetics , Viral Proteins/genetics
3.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Article in English | MEDLINE | ID: covidwho-1435627

ABSTRACT

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Subject(s)
Disease Models, Animal , Smallpox , Animals , Humans , Mice , Variola virus
4.
Clin Infect Dis ; 72(10): e448-e457, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232180

ABSTRACT

BACKGROUND: The Diamond Princess cruise ship was the site of a large outbreak of coronavirus disease 2019 (COVID-19). Of 437 Americans and their travel companions on the ship, 114 (26%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We interviewed 229 American passengers and crew after disembarkation following a ship-based quarantine to identify risk factors for infection and characterize transmission onboard the ship. RESULTS: The attack rate for passengers in single-person cabins or without infected cabinmates was 18% (58/329), compared with 63% (27/43) for those sharing a cabin with an asymptomatic infected cabinmate, and 81% (25/31) for those with a symptomatic infected cabinmate. Whole genome sequences from specimens from passengers who shared cabins clustered together. Of 66 SARS-CoV-2-positive American travelers with complete symptom information, 14 (21%) were asymptomatic while on the ship. Among SARS-CoV-2-positive Americans, 10 (9%) required intensive care, of whom 7 were ≥70 years. CONCLUSIONS: Our findings highlight the high risk of SARS-CoV-2 transmission on cruise ships. High rates of SARS-CoV-2 positivity in cabinmates of individuals with asymptomatic infections suggest that triage by symptom status in shared quarters is insufficient to halt transmission. A high rate of intensive care unit admission among older individuals complicates the prospect of future cruise travel during the pandemic, given typical cruise passenger demographics. The magnitude and severe outcomes of this outbreak were major factors contributing to the Centers for Disease Control and Prevention's decision to halt cruise ship travel in US waters in March 2020.


Subject(s)
COVID-19 , Ships , Diamond , Disease Outbreaks , Humans , Quarantine , SARS-CoV-2 , Travel , United States/epidemiology
5.
PLoS One ; 16(4): e0249901, 2021.
Article in English | MEDLINE | ID: covidwho-1186608

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), evolved rapidly in the United States. This report describes the demographic, clinical, and epidemiologic characteristics of 544 U.S. persons under investigation (PUI) for COVID-19 with complete SARS-CoV-2 testing in the beginning stages of the pandemic from January 17 through February 29, 2020. METHODS: In this surveillance cohort, the U.S. Centers for Disease Control and Prevention (CDC) provided consultation to public health and healthcare professionals to identify PUI for SARS-CoV-2 testing by quantitative real-time reverse-transcription PCR. Demographic, clinical, and epidemiologic characteristics of PUI were reported by public health and healthcare professionals during consultation with on-call CDC clinicians and subsequent submission of a CDC PUI Report Form. Characteristics of laboratory-negative and laboratory-positive persons were summarized as proportions for the period of January 17-February 29, and characteristics of all PUI were compared before and after February 12 using prevalence ratios. RESULTS: A total of 36 PUI tested positive for SARS-CoV-2 and were classified as confirmed cases. Confirmed cases and PUI testing negative for SARS-CoV-2 had similar demographic, clinical, and epidemiologic characteristics. Consistent with changes in PUI evaluation criteria, 88% (13/15) of confirmed cases detected before February 12, 2020, reported travel from China. After February 12, 57% (12/21) of confirmed cases reported no known travel- or contact-related exposures. CONCLUSIONS: These findings can inform preparedness for future pandemics, including capacity for rapid expansion of novel diagnostic tests to accommodate broad surveillance strategies to assess community transmission, including potential contributions from asymptomatic and presymptomatic infections.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 Nucleic Acid Testing , Centers for Disease Control and Prevention, U.S. , Child , Child, Preschool , Cohort Studies , Epidemiological Monitoring , Female , Humans , Male , Middle Aged , Public Health , SARS-CoV-2/isolation & purification , Travel , Travel-Related Illness , United States/epidemiology , Young Adult
6.
mBio ; 11(5)2020 10 13.
Article in English | MEDLINE | ID: covidwho-868276

ABSTRACT

Despite numerous barriers to transmission, zoonoses are the major cause of emerging infectious diseases in humans. Among these, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and ebolaviruses have killed thousands; the human immunodeficiency virus (HIV) has killed millions. Zoonoses and human-to-animal cross-species transmission are driven by human actions and have important management, conservation, and public health implications. The current SARS-CoV-2 pandemic, which presumably originated from an animal reservoir, has killed more than half a million people around the world and cases continue to rise. In March 2020, New York City was a global epicenter for SARS-CoV-2 infections. During this time, four tigers and three lions at the Bronx Zoo, NY, developed mild, abnormal respiratory signs. We detected SARS-CoV-2 RNA in respiratory secretions and/or feces from all seven animals, live virus in three, and colocalized viral RNA with cellular damage in one. We produced nine whole SARS-CoV-2 genomes from the animals and keepers and identified different SARS-CoV-2 genotypes in the tigers and lions. Epidemiologic and genomic data indicated human-to-tiger transmission. These were the first confirmed cases of natural SARS-CoV-2 animal infections in the United States and the first in nondomestic species in the world. We highlight disease transmission at a nontraditional interface and provide information that contributes to understanding SARS-CoV-2 transmission across species.IMPORTANCE The human-animal-environment interface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important aspect of the coronavirus disease 2019 (COVID-19) pandemic that requires robust One Health-based investigations. Despite this, few reports describe natural infections in animals or directly link them to human infections using genomic data. In the present study, we describe the first cases of natural SARS-CoV-2 infection in tigers and lions in the United States and provide epidemiological and genetic evidence for human-to-animal transmission of the virus. Our data show that tigers and lions were infected with different genotypes of SARS-CoV-2, indicating two independent transmission events to the animals. Importantly, infected animals shed infectious virus in respiratory secretions and feces. A better understanding of the susceptibility of animal species to SARS-CoV-2 may help to elucidate transmission mechanisms and identify potential reservoirs and sources of infection that are important in both animal and human health.


Subject(s)
Animals, Zoo/virology , Betacoronavirus/physiology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Pandemics/veterinary , Panthera/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Genome, Viral/genetics , Haplotypes , Humans , New York City/epidemiology , One Health , Phylogeny , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL